Mechanical Behavior of Fiber Strapping Band for Infrastructure Rigid Pavement
DOI:
https://doi.org/10.62872/1jyz2f21Keywords:
Analysis, Strapping band, compressive strength, tensile strength, Rigid PavementAbstract
The development of science, especially in the field of transportation, especially roads, requires adequate infrastructure in the form of rigid roads or pavements that are in accordance with conditions in the field. This study aims to analyze the addition of fiber strapping band by 0.75%, 1.25%, 1.75% to increase concrete compressive strength, and concrete tensile strength. Research Methods The experiment was conducted in the Civil Engineering laboratory of the University of Muhammadiyah Parepare. The results of the study were 0% (normal), 0.75%, 1.25% and 1.75% on fine aggregates. Testing of 28-day-old concrete on normal concrete amounted to 22.74 Mpa, on 0.75% fiber strapping band concrete amounted to 21.137 Mpa, on 1.25% strapping band fiber concrete amounted to 16.70 Mpa, and on 1.75% strapping band fiber concrete amounted to 17.26 MPa. The results of tensile testing of concrete at the age of 28 days, in normal concrete amounted to 5.889 MPa. For concrete with 0.75% fiber strapping band of 6.111 MPa. For concrete with 1.25% fiber strapping band of 5.556 MPa. For concrete with 1.75% fiber strapping band of 5.778 MPa. The results showed that the use of strapping bands as a substitute for fine aggregate in concrete had a considerable influence so that it experienced an increase in pressure on concrete by a certain percentage. Thus concrete with 0.75% fiber strapping band produces compressive strength plans and is suitable for use for rigid pavement pavement.
Downloads
References
Abdul Majid Akkas. Dkk., (2013). Studi Pengaruh Serat Strapping Band (SSB) Terhadap Kekuatan Beton.
Adnan, H Parung, M W Tjaronge and R Djamaluddin (2020). Bond between steel reinforcement bar and sea water concrete. Civil Engineering journal
Antiohos S and Tsimas S (2005), Investigating the role of reactive silica in the hydration mechanism of high-calcium fly ash/cement systems, Cement and Concrete Composites 27(2)171-181.
ASTM C 33-92., Standard Specification for Concrete Aggregate. ASTM Book of Standards, Part 04.02, ASTM, West Conshohocken, PA, 7 pp.
Badan Standar Nasional (2004). SNI-15-2049-2004. Semen Portland, Bandung.
Badan Standar Nasional. (1990). SNI-15-1990-032. Persyaratan Gradasi Batu Pecah, Bandung.
Badan Standarisasi Nasional (2000). SNI 03-2834-2000., “Tata cara pembuatan rencana campuran beton normal”. Bandung.
Balitbang Kimpraswil., (2003). Metoda, Tata Cara dan Spesifikasi, Bagian 3: Beton, Semen, Perkerasan Jalan Beton Semen. Jakarta.
Dipohusodo, I. (1996). Manajemen Konstruksi Jilid I. Yogyakarta: kanisius.
Dipohusodo, Istimawan (1996). Manajemen Proyek & Konstruksi. Kanisius. Yogyakarta.
Gusti, M., Noorhidana, V. A., & Irianti, L. (2021). Pengaruh Variasi Serat Polypropylene dan Faktor Air Semen Pada Uji Kuat Tekan, Kuat Tarik Belah dan Kuat Lentur Self Compacting Concrete (SCC). Jurnal Rekayasa Sipil dan Desain, 9(1), 105-118.
https://doi.org/10.31090/njts.v3i1.848
Junardi Maskar, M. Wihardi Tjaronge, Abdul Majid Akkas., Studi Pengaruh Serat Polypropylene (PP) Terhadap Kuat Tekan dan Tarik Belah Self Compacting Concrete (SCC). Journal Teknik Sipil, Universitas Hasanuddin, Makassar.
Kimpraswil, D. (2003). Pedoman/Petunjuk Teknik dan Manual: Air Minum Perkotaan Bagian: 6 (Volume I). Balitbang. Jakarta.
Masdar, J., Tjaronge, M. W., Akkas, A. M., Sipil, J., Teknik, F., & Hasanuddin, U. (n.d.). Kuat tkan dan tarik belah self compacting concrete (scc) research of polypropylene (pp) fiber effect toward compressive strength and split tension strength self compacting concrete (scc), Fakultas Teknik Jurusan Sipil strength and split tension strength.
Megargle, R. (1990). ASTM (American Society for Testing and Materials) standards for medical computing. Computers in healthcare, 11(2), 25-26.
Mulyono, S. (2004). Riset operasi.
Nasrul, S., Yanti, G., & Megasari, S. W. (2021). Hubungan Kuat Tekan dan Kuat Lentur pada Beton Berpori. Jurnal Rekayasa Konstruksi Mekanika Sipil, 1-8.
Neville A M and Brooks J J (1987) Concrete Technology (New York: Longman Scientific & Technical).
Polii, R. A., Sumajouw, M. D., & Windah, R. S. (2015). Kuat Tekan Beton Dengan Variasi Agregat Yang Berasal Dari Beberapa Tempat Di Sulawesi Utara. Jurnal Sipil Statik, 3(3).
Portland, S. (2000). Pengertian Sifat-sifat Semen Portland. 1824.
PT Jetset Polychrome, Tali strapping band produsen merk superior pack. (www.strappingband.net)
PT. Jetset Polychrome (2023), www.strappingband.net.
SNI 03-2834-2000. (2000). SNI 03-2834-2000: Tata cara pembuatan rencana campuran beton normal. Sni 03-2834-2000, 1–34.
Tjokrodimuljo, kardiyono. (1996). Teknologi beton. In Teknologi beton.
Tjokrodimuljo, K. (1996). Teknologi beton.
Uddin M A, Jameel M, Sobuz H R, Islam M S and Hasan N M S (2012), Experimental study on strength gaining characteristics of concrete using PCC KSCE Journal of Civil Engineering 17(4) 789-796.
Vitri, G., & Herman, H. (2019). Pemanfaatan Limbah Kelapa Sawit Sebagai Material Tambahan Beton. Jurnal Teknik Sipil, 6(2), 78-87.
Wuryati, S, dan Candra, R. (2001). Teknologi beton (7th ed.). Yogyakarta : Kanisius. https://id.scribd.com/search?query=Candra%2C R.%2C %26 Wuryati%2C S. (2001). Teknologi Beton. Yogyakarta%3A Kanisius.
Yanti, G., Zainuri, Z., & Megasari, S. W. (2018). Analisis Perbandingan Penambahan Variasi Consol Terhadap Kuat Tekan Beton. Siklus: Jurnal Teknik Sipil, 4(1), 59–66. https://doi.org/10.31849/siklus.v4i1.1155
Zuraidah, S., Sujatmiko, B., & Gualdin F, J. (2019). Pemanfaatan Limbah Strapping band dan Styrofoam dengan Menggunakan Pasir Mojekerto untuk Bata Ringan. Narotama Jurnal Teknik Sipil, 3(1), 41–58.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Adnan Adnan, Habibie Habibie , Rahmawati Rahmawati (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.